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1. Introduction 

Analysis and predictions of projectile trajectories has a long history.  Notable authors are 
Galileo, Bernoulli, and Euler who found mathematical solutions to this problem which gave 
important advances to trajectory predictions.  Newton has been credited for the quadratic law of 
resistance characterizing the aerodynamic drag of a body.  Further study has shown that a more 
sophisticated characterization of drag is required to predict accurate trajectories.  Weinacht  
et al. (1) give a nice historical perspective of previous work followed by a detailed analysis of 
trajectories based on power-law drag curves.  Increased sophistication has also lead to some 
unfortunate consequences.  Details are often required that may not always be relevant to the 
problem in question and thus over-burdening the user or designer.  For such cases, simplified 
analysis can provide accurate results with a minimum of relevant input. 

High-velocity, direct-fire munitions can be studied using point mass trajectory equations coupled 
a with power-law drag relation (1–4).  The study (1), suggested by the experimental study of 
Celmins (5), presented analysis and predictions of flat-fire projectiles with small yaw and high 
velocities using a drag law of the form: 

 
n

0
VDD V

VCC
0

⎟
⎠
⎞

⎜
⎝
⎛=  . (1) 

The governing equations assumed two-dimensional (2-D) motions with parameterized drag 
curves depicting drag for projectile velocities that result in high Mach numbers.  The analysis 
was done by first neglecting gravity and finding closed-form solutions to the zero gravity 
velocity profiles.  Then motion under the influence of gravity was modeled using drag forces 
(equation 1) subjected to these zero gravity velocities. 

A continuation of this work is given here but this analysis retains gravity such that drag is always 
influenced by gravity while using the same power-law drag formulation found in Weinacht et al. 
(1).  The vertical and horizontal momentum equations are shown to be equivalent to a single 
third-order differential equation (DE) in which the independent variable is the down-range 
distance.  Making the assumption that the explicit slope of the trajectory DE can be written as a 
free parameter allows the governing third-order DE to be integrated giving simple closed-form 
solutions.  When the launch angle is small, these solutions become the solutions found in 
Weinacht et al. (1).  A value for the free parameter is given and is shown to produce very 
accurate closed-form solutions for launch angles up to 30°.  These solutions yield easy-to-use 
results that broaden those given in Weinacht et al. (1) for flat-fire cases.  The theory and model 
discussions are presented in the following sections. 
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2. Equations of Motion 

Assuming the 2-D theory found in Weinacht et al. (1) gives the governing equation: 
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Using x  as the independent variable leads to xyy ′=  and xyxyy 2 ′+′′= , so equation 2 
becomes: 
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For convenience, two length scales are defined as 2

0
VgYy ′=  and 

00 VVXx ′=  making the last 
equation in equation 3 take the form 

 

.

 . 
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Please note that equation 5 is equivalent to equation 1 even when ( )λ = λ y , but the presentation 

given here takes constant=λ . 

The analysis given in Weinacht et al. (1) focused on direct fire, thus assuming the elevation angle 

φ  is small.  This suggests a very good approximation is to let 1
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results nearly identical to those given in Weinacht et al. (1) if φ  is small.  However, in the 
interest of using elevation angles φ  that are not necessarily small, it further suggests treating 
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solution to equation 5 satisfying the initial conditions. 
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Note the last expression becomes identical to the results presented in Weinacht et al. (1) when 
1<<φ , thus making 1cos →φ  and 1Q → .  Since the remainder of this report stems from 

manipulations of equation 6, it causes all following results given here to have similar identical 
behavior to Weinacht et al. (1) whenever the launch angle becomes small.  This report will show 
equation 6 gives good solutions to the parameterized equation 5 for elevation angles 0 ≤ φ ≤ 30°  

by using 
7

6cosQ n1 φ
= − .  This choice for Q  was obtained using trial and error while comparing 

numerical solutions of equation 5 to those of equation 6, starting with 1Q = .  The authors have 
judged the given value for Q  is adequate for 0 ≤ φ ≤ 30°.  The following presentation primarily 
focuses on φ = 30° since these cases were found to display the weakest agreement of all launch 
angles in the range 0 ≤ φ ≤ 30°.  However, a few excursions with φ = 45° are discussed to 

indicate the limitations of 
7

6cosQ n1 φ
= −  for φ > 30°.  
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For completeness, the limiting cases for equation 6 are given in the following expressions: 

 

2n,

2
XQ

cosQ
X21log

4
cosQ

cosQ
cosQXcosQ4X4log

4
XQ

1n,
cos

X1
cosQ

X2
cosQ
XlogQ

0n,
cos4

eQX2QQ

g
XVVtan

Y

22

22

42

4222

2
1

22

2
2

2

Q
X2

00

→

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ

−
φ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
φ

φ+φ−

→
φ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

φ
−

φ

→
φ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

→
′φ

−

. (7)

 

The choices of projectiles are the same as those used in Weinacht et al. (1) and the pertinent data 
are taken from table 1.  

Table 1.  Projectile characteristics. 

 
 

Projectile Type 

 
Muzzle Velocity 

V0 
(m/s) 

Muzzle Retardation 

0
V′  

([m/s]/km 
0

0

V
V′

 

(1/km) 
M829A1 1580 68 0.043 
M865PIP 1700 343 0.202 
M830 1140 273 0.239 
M830A1 1410 209 0.148 

 
Comparative examples illustrating the validity of the parameterized solution equation 6 to the 
numerical solution of equation 5 are given in figure 1.  The agreement between the two types of 
solutions is very strong except where the trajectory slope is steep for the M865PIP projectile. 

The slope of the trajectories shown in figure 1 is given in figure 2, where it is evident that the 
analytic solutions agree with the numerical solutions.  However, the particular case, M865PIP, 
has weaker agreement but this can be attributed to the much steeper slope and the fact that 
derivatives of an approximation usually don’t agree as well as the given approximation. 
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Trajectory
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Figure 1.  Comparison of analytic and numeric trajectories. 

Trajectory Slope
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Figure 2.  Comparison of analytic and numeric trajectory slopes. 

Velocity components are readily obtained from equation 6 and limiting values from equation 7 
produce the following expressions:
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Figure 3 shows Mach number M profiles calculated from the last set of equations where 
comparisons are made to numerical solutions generated from equation 5. 

 

Velocity Profiles
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Figure 3.  Comparison of numerical and analytic Mach number profiles. 
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The last set of plots also show that the weakest agreement of Y  and 
Xd
Yd , figures 1 and 2, 

occurs when the Mach number M<1.  Since the power-law drag formulation, equation 2, is 
usually considered for M>1, it suggests that the given results for φ ≤ 30° are more applicable for 
ranges where M>1.  Examples of the types of errors that occur when φ > 30°  are shown in 
figure 4, where φ = 45°.  

Trajectory
Red n=.75 Blue n=.25 Black n=0

0

5
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15

20

25
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35
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X

Y

M865PIP Numerical
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M830 Analytic
M829A1 Numerical
M829A1 Analytic

45=φ

  

Figure 4.  Comparison of analytic and numeric trajectories for φ = 45. 

These results may be interpreted as an indication that 0 ≤ φ ≤ 30° is an over-restriction for the 
ranges where M>1. 

3. Gravity Drop 

Analytical results of the previous work (1) regarding gravity drop were obtained by considering 
dimensional y terms that are dependent on g.  Applying this last statement to the analysis given 
here simply means to set the term proportional to g–1 in equations 6 and 7 to zero to get scaled 
versions of gravity drop “Yg–drop.”  Furthermore, expanding this expression in a Taylor series and 
converting the series to a rational function, thus increasing the range of validity, yields the 
following expression: 
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( )( )
( ) ( )( )φ+φ−+

φ−+φ
≈

−

− n22n

22n

dropg cosQ10cosQ4XX2n3
cos15X1n32XQcosY . (9)

 

Figure 5 has examples of gravity drop for the M865PIP projectile at various values of the drag-
curve parameter n.  Evidently, dropgY −  is well approximated by equation 9. 
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30=φ

 

Figure 5.  Comparison of numerical and analytic gravity drop for the M865PIP. 

4. Gun Elevation and Target Position 

Predicting the gun elevation angle φ  to acquire a target at 0Y = , for a given range position X , 
is a useful flight parameter (1) that can be found from equation 6.  Using the result for dropgY −  

given in equation 9 shows the elevation angle satisfies 

 ( )( )
( ) ( )( )φ+φ−+

φ−+φ−
≈

φ′ −

22n

2n
00

cosQ10cosQ4XX2n3
cos15X1n32XQcos

g
tanVV . (10) 

Solving this expression for φ as large as 30° generally will require numerical techniques.  But 
limiting analysis to small angles, 1Q and 1cos1 →→φ⇒<<φ , allows equation 10 to give direct 
solutions for small φ.  These values are the same as those found in Weinacht et al. (1) and are 
repeated here for completeness in figure 6. 
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Figure 6.  Scaled gun elevations as a function of scaled range. 

5. Trajectory Rate of Change Due to Muzzle Velocity 

The rate of vertical change of trajectory due to muzzle velocity 0V  can change significantly with 
range.  An analytic expression for this comes directly from equation 6 and the dimensional rate 

of change scaled as 
0

0
0

00

Vd
YdV

Vd
yd

g
VV

=
′

 is shown in the following expressions: 
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To validate equation 11, the derivative of equation 5 with respect to 0V  is numerically integrated.  
Results given in figure 7 compare the parameterized analytic solution to the nonparametric 
numerical solution.
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Figure 7.  Comparison of scaled numerical and analytic dy/dV0. 

Figure 7 shows equation 11 is a good approximation to the rate of change of the trajectory 
caused by varying the muzzle velocity 0V . 

6. Trajectory Rate of Change Due to Muzzle Retardation 

The rate of vertical change in the trajectory as a function of the drag coefficient or muzzle 
retardation 

0
V′  can also be an important influence on trajectory that depends on range.  Again, 

equation 6 is used to find a scaled version of this rate of change. 
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Comparing these expressions to the numerical integration of the derivative of equation 5 with 
respect to 

0
V′  is shown in figure 8.  The case 25.0n =  shows the analytic solution degrades with 

increasing range.  Once again, this is not too surprising since the derivative of a well-converged 
approximate function suffers with less convergence.  
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Figure 8.  Comparison of scaled numerical and analytic 
0

d y d V′ . 

7. Time as the Independent Variable 

The presentation given here has considered x as the independent variable but all of the previous 
results could be given in terms of the time t if desired.  Integrating the first equation in equation 2 
leads to an expression of t as a function of the scaled range X given by 
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Validation of equation 13 is displayed in figure 9, where it is evident that this expression 
supplies an accurate method to covert the scaled spatial independent variable X to the scaled 
temporal variable 0

Vt ′ .  Some error is introduced for the M865PIP projectile which can be 
attributed to the rapidly decreasing slope for X > 1 (see figure 2).  This may not be a serious 
defect due to the relative small Mach number for X in this range. 
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Figure 9.  Comparison of scaled time as a function of scaled range. 

8. Low Velocity Projectile 

All of the investigations in this report have thus far focused on projectiles with high Mach 
number launch velocities.  Therefore, suspicions may arise when applying this theory to 
projectiles with low launch velocities.  To address this issue implies considering a sample of a 
relatively low launch velocity projectile.  One such projectile is Scorpion, which has a typical 
launch velocity of V0 = 76 m/s and a muzzle retardation of [ ]( )kmsm104V

0
=′ .  Figures 10 and 

11 have examples of subjecting Scorpion to the theory of this report using the usual value of  
n = 0 for subsonic launch velocities. 

Evidently, the parametric results for low velocities agree as well as they do for high Mach 
number projectiles with launch angles 0 ≤ φ ≤ 30°.  When φ = 45°, the agreement has degraded 
but this agreement may still be strong enough to suggest that φ ≤ 30° is somewhat over-
restrictive. 
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Figure 10.  Comparison of trajectory calculations for Scorpion. 
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Figure 11.  Comparison of trajectory slope calculations for Scorpion. 
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9. Summary 

This report extends the investigation found in Weinacht et al. (1) which considered direct-fire, 
high-velocity projectiles subjected to power-law drag curves.  The extension here continues to 
assume power-law drag curves but now the launch angle φ  takes on values as large as φ = 30°.  
In Weinacht et al. (1), gravity is treated as a small perturbation when projectile velocities are 
high.  However, in this report, the equations of motion are written as a third-order nonlinear 
differential equation, DE, where range is the independent variable.  A simple analytic solution to 
the DE is found by assuming a factor in this DE can be treated as a fixed parameter Q .  A value 

for 
7

6cosQ n1 φ
= −  is shown to produce valid solutions for launch angles 0 ≤ φ ≤ 30° and, in the 

limit of 0→φ , yields solutions identical to those given in Weinacht et al. (1).  Experience has 
shown the validity of the parameterized solutions increases as φ  becomes smaller and, in fact, if 

1Q =  for 0 ≤ φ ≤ 20°, produces accurate solutions.  Examples where φ = 45° characterize the 
errors and trajectory degradation that occurs when the launch angle is greater than 30°, which 
may further indicate that 0 ≤ φ ≤ 30° may be too restrictive.  Replacing the spatial dependency to 
temporal dependency is easily accomplished by application of equation 13.  Results given here 
can be used in engineering applications that are similar those discussed in Weinacht et al. (1), but 
now the launch angle φ  can be as large as φ = 30°. 
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List of Symbols, Abbreviations, and Acronyms 

DC    Drag coefficient 

0VDC   Launch drag coefficient 

D    Reference diameter 

g    Gravitational acceleration 

m    Projectile mass 

M    Mach number 

n    Exponent of drag power law 

S    Reference area 4DS 2π=  

t    Time 

V    Total velocity 

0V    Muzzle velocity 

x    Dimension down-range distance 

y    Dimension vertical distance 

0
V′   Muzzle retardation 

φ    Initial gun elevation angle 

ρ    Atmospheric density 
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